Cartesian closed subcategories of topological fuzzes

نویسندگان

  • Ghasem Mirhosseinkhani Department of mathematics and Computer Sciences, Sirjan University of Technology, Sirjan, Iran.
چکیده مقاله:

A category $mathbf{C}$ is called Cartesian closed  provided that it has finite products and for each$mathbf{C}$-object $A$ the functor $(Atimes -): Ara A$ has a right adjoint. It is well known that the category $mathbf{TopFuzz}$  of all topological fuzzes is both complete  and cocomplete, but it is not Cartesian closed. In this paper, we introduce some Cartesian closed subcategories of this category.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subcategories of topological algebras

In addition to exploring constructions and properties of limits and colimits in categories of topological algebras, we study special subcategories of topological algebras and their properties. In particular, under certain conditions, reflective subcategories when paired with topological structures give rise to reflective subcategories and epireflective subcategories give rise to epireflective s...

متن کامل

Cartesian Closed Topological Categories and Tensor Products

The projective tensor product in a category of topologicalR-modules (where R is a topological ring) can be defined in Top, the category of topological spaces, by the same universal property used to define the tensor product of R-modules in Set. In this article, we extend this definition to an arbitrary topological category X and study how the cartesian closedness of X is related to the monoidal...

متن کامل

Free Modules over Cartesian Closed Topological Categories

The construction of free R-modules over a cartesian closed topological category X is detailed (where R is a ring object in X), and it is shown that the insertion of generators is an embedding. This result extends the well-known construction of free groups, and more generally of free algebras over a cartesian closed topological category.

متن کامل

subcategories of topological algebras

in addition to exploring constructions and properties of limits and colimits in categories of topologicalalgebras, we study special subcategories of topological algebras and their properties. in particular, undercertain conditions, reflective subcategories when paired with topological structures give rise to reflectivesubcategories and epireflective subcategories give rise to epireflective subc...

متن کامل

Dependent Cartesian Closed Categories

We present a generalization of cartesian closed categories (CCCs) for dependent types, called dependent cartesian closed categories (DCCCs), which also provides a reformulation of categories with families (CwFs), an abstract semantics for Martin-Löf type theory (MLTT) which is very close to the syntax. Thus, DCCCs accomplish mathematical elegance as well as a direct interpretation of the syntax...

متن کامل

Cartesian closed Dialectica categories

When Gödel developed his functional interpretation, also known as the Dialectica interpretation, his aim was to prove (relative) consistency of first order arithmetic by reducing it to a quantifier-free theory with finite types. Like other functional interpretations (e.g. Kleene’s realizability interpretation and Kreisel’s modified realizability) Gödel’s Dialectica interpretation gives rise to ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 6  شماره 1

صفحات  23- 33

تاریخ انتشار 2019-03-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023